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Summary: Our aim here is to predict elongational flow-induced enhancements
in thermal or electrical conductivity of liquid crystal polymer (LCP) nano-
composites. To do so, we combine two classical mathematical asymptotic
analyses: slender longwave hydro-thermo-dynamics for fibers and exact
analysis of pure elongation of LCPs in solvents for bulk phases without
boundary effects; and homogenization theory for effective properties of low
volume-fraction spheroidal inclusions. Two implications follow: elongational
flow dominates fiber free surface and thermal effects on electrical and thermal
conductivity enhancements; and, there appears to be no sacrifice in
enhancements by producing much higher radius, bulk fibers.
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Introduction
Ultra-strength textile fibers, e.g. Vectran and Kevlar, achieve distinguished properties as a
result of interactions between macroscopic elongation-dominated hydrodynamics,
microscopic orientation dynamics of liquid crystalline polymer (LCP) molecules, free
surface drag effects, and thermodynamics. Recently direct spinning of carbon natotube
fibers from chemical vapor deposition synthesis is made possible which will provide many
potential applications.
In the manufacturing of LCP fibers, the melt or solution is extruded through a spinneret
into cross-flowing air. The fiber is pulled downstream, past the solidification transition, at
a speed considerably above the extrusion speed, effecting large extension rates along the

filament. Process simulations provide a useful tool for exploring the effect of changes in
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operating variables (extrusion temperature, air velocity, take-up speed, etc.) and material
properties (molecular as well as LCP melt or solution rheology) on the properties of the
spun filament. [sothermal spinning flows of liquid crystalline polymers have been studied®
341 and extended to thermotropic liquid crystalline polymer (TLCP) spin processes.”: o
The first goal of this article is to apply our TLCP spin model to predict electrical or
thermal conductivity properties of spun fibers. Second, we compare fiber conductivity
enhancements with pure elongation flow-induced conductivity, which is a consequence of
flow and molecular orientation dynamics uncoupled from thermal and surface drag effects.
The article is organized as follows. First we briefly recall the asymptotic 1-D TLCP model.
We then introduce the effective conductivity tensor of low volume fraction composites
from Zheng et al.””) Finally, we present numerical results on conductivity in thermal and

isothermal fiber spinning and isothermal pure elongational flow. We give results for rod-

like LCPs, although the same methods apply to discotic molecules.

Asymptotic 1-D TLCP Fiber Spinning Model

The full 3-D model is based on a Doi-type mesoscopic theory for nematodynamics, along
with empirical correlations and rheological relations that are consistent with the solution
processing of TLCPs.” ® Exploiting the fact that the fiber is very thin with a typical
aspect ratio of the order 10, we have derived the 1-D nonisothermal slender model for
axisymmetric TLCP filaments.*® Let ¢ be the free surface radius, v the axial velocity, s

the uniaxial order parameter, and T the temperature. The leading order equations are:
(), +(+#), =
(¢2V)1+(¢2V2)z = ¢ +“¢ +[: ( (S T)V +aTU(S)):| ﬁvi’¢y>l (1)
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where the Froude number F and the Weber number W, respectively characterize gravity
and surface tension relative to inertia; the Peclet number Pe and the Brinkman number Br,
respectively parametrize specific heat and viscous heating relative to thermal conductivity;
the Stanton number St measures the dimensionless heat transfer coefficient; the parameters

o, B and o4 respectively describe the molecular kinetic energy per unit volume relative to
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inertial energy per unit volume, dimensionless drag coefficient and anisotropic drag

parameter; A(T) is the scaled LCP relaxation time,

A
A, TY=Age ,

where A, and o are determined by rheology data at a fixed temperature. Ry (s,T) is an
effective 1-D flow-orientation Reynolds number,

1
: 3 {T*
Re/}(s,T)= §e

+2aTA(T)s,

consisting of an isotropic Newtonian and an elastic orientation-dependent contribution; the
integral of U(s) defines the uniaxial bulk free energy, whose critical points versus

dimensionless LCP concentration N give the isotropic-nematic phase diagram,

N
U(s) = s|—1 —=(1-s)2s+ 1)—l 2)
L3 ]
The other two leading order unknowns are u, the radial velocity, and p, the pressure, which
are prescribed by
VZ
=T

1
Lo 1 %74} _1 2
p——W¢ “Re¢ v, 30{TU(S)+3()!/\(T)T(1—s).5‘vz.

For steady state solutions the equation of continuity (1)a integrates to

Fv=1,
and the computational domain is scaled to 0 < z<1. The upstream location z = 0is chosen
past the spinneret, beyond the swell region so that the longwave asymptotic approximation
is satisfied. To be consistent with the nondimensionalization, fixed upstream boundary
conditions are placed on fiber radius, velocity, and temperature:

#0)=1, v(0)=1, T(0)=1.
The downstream thermal boundary condition is selected by assuming that axial thermal
conduction is negligible,

o(@’1.)
7 =0.

z=]
The other two boundary conditions, s(0) and the draw ratio v(1), are free processing

parameters which need to be specified in the simulations. The upstream degree of
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orientation, s(0), is a function of spinneret design, whereas the take-up speed v(1) (the so-

called draw ratio) measures process speed and throughput.

Effective Conductivity Tensors
Recently Zheng et al.m applied homogenization theory to predict the effective

conductivity tensor, o, for uniform suspensions of spheroidal nano-inclusions with
conductivity ¢, and volume fraction 6, in a matrix of conductivity o;. Conductivity obeys
elliptic equations which are virtually identical for thermal, electric, and dielectric
properties. Here we focus on the effective thermal conductivity, o°, of LCPs in a solvent
whose ratio of conductivities is highly contrasted, o3/ 61 >> 1 or 6,/ 65 << 1 . The nano-
elements are from high aspect ratio (length-to-diameter ratio) nematic liquid crystalline
polymers, either rod-like or platelet spheroids. Using the fact that the overall conductivity
properties of polymer nano-composites are well approximated by the effective
conductivity tensor in the low volume fraction regime of the included phase and the
effective conductivity is in turn strongly influenced by the orientation distribution of the
nano-inclusions and exploiting the results of Doi-Hess kinetic theory of the orientational
probability distribution at both isotropic and order volume fractions, they have derived the
effective conductivity tensor in close form:

2
o,+0,—(0,— gL,

o =ol+00,(0,~ 0'1){

n (o,—o)(1-3L)
[(0'2 +o0)—(0,- O-I)La][o-l +(o,— O-I)La]

where I is the 3 by 3 identity matrix, L, is the spheroidal depolarization factor depending

M(f)} +(6;),

on the aspect ratio r of the molecular spheroids through the relation
1-£[ 1 (1+g) 1 =
L =—=—In—]-1 =¥l-r",
gl LZS "T=e _J’ & r
[ is the orientational probability distribution function of the LCP inclusions, governed by
the Smoluchowski equation of the Doi-Hess kinetic theory for quiescent or flowing
nematic polymers; M(f) is the second-moment of the orientation probability density f,

which is the object of mesoscopic closure models from which the thin fiber equations were

g 2345 6]

derive For uniaxial orientation distributions, in which the orientation

transverse to the fiber axis is isotropic, M(y) is related to the order parameter s by
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M(f)= s(nn— %) +§

where n is the principal orientation axis, which converges downstream to the fiber axis of
symmetry. Upstream, the LCP solution is generally in a biaxial phase, where M(/) is

prescribed by two order parameters, s and 3,
( N f I I
M(f)= s\, ~ 3) +,Bkn2n2 _E) +§,
where n; and n; are two major directors, or principal axes, of the orientation distribution.
One can explicitly calculate the distinct principal values (eigenvalues) o and
corresponding principal axes n; of the conductivity tensor o*, and then determine relative

conductivity enhancements €:

o’ -0

g = fg , j=12,3.

J
1

The maximum conductivity enhancement ema=max(g;), which for fiber spinning flows is
associated with conductivity along the spun fiber axis, and for pure extensional flows is
described below. Anisotropy in conductivity is measured by max(gmax -€j ), which indicates

the contrast in conductivity along and transverse to the principal axes of ¢°.

Effective Conductivity Enhancement in Both Fiber Spinning Flow and
Pure Elongation Flow

In order to see how effective conductivity is enhanced in fiber spinning flow, we first solve
the steady state solutions of (1), confirm their stability by both time-dependent simulations

and stability analysis,[s’ 8l

and then compute the maximum conductivity enhancement.
Figure 1 shows both the maximum anisotropy in conductivity (top panel) and the
maximum conductivity enhancement (bottom panel) as a function of the spun fiber radius
for both isothermal and thermal cases. In this study we use polymer-CNT (carbon
nanotube) composites as a model example, where the polymer matrix typically has an
intrinsically low thermal conductivity on the order of 0.15 to 0.30 W/m K and the CNTs
are metallic. The CNTs exhibit a high aspect ratio, with the length generally several um
and the diameter approximately 0.4 to 100 nm. In all the calculations presented in this
paper the aspect ratio r = 1000, the thermal conductivity of the nanotubes is taken as 2000

W/m K and that of polymeric materials as 0.20 W/m K. 89 Ag a result, o1/5,=107,
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Figure 1. The maximum anisotropy in conductivity (top panel) and the maximum
conductivity enhancement (bottom panel) as a function of the spun fiber radius ¢(1) for
both isothermal (solid line) and thermal (dashed line) cases.

In figure 2 we depict the maximum effective conductivity enhancement as a function of
the volume fraction 6, which is related to the aspect ratio r and the dimensionless

concentration parameter N by
T
6, =—N.
2 8
As shown here, the maximum effective conductivity enhancement behaves as a monotone

increasing function of the volume fraction.
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Figure 2. The maximum effective conductivity enhancement as a function of the volume
fraction 0,.

For comparison purposes, next we consider pure elongation-induced monodomains at
isotropic and nematic concentrations. These predictions address the influence of an
imposed linear extensional flow on molecular orientation, which is a poor man’s
approximation to fiber extensional flow, while suppressing the effects of free surfaces,

temperature, and boundary conditions. The dimensionless flow field for pure elongation,
: : . , . [(x y
in rectangular coordinates (x,y,z) with respect to the basis (ex,ey.e;), is v= Pek—a,—z,z .

Here Pe is Peclet number, the critical flow/orientation dimensionless parameter, describing
the ratio of the elongational rate and the orientational relaxation rate ( A, above). For Pe >
0, the flow stretches along the z axis, called axial or unidirectional elongation; for Pe < 0,
the flow stretches radially in the entire xy-plane, called planar or bidirectional elongation.

The governing biaxial order parameter equations in imposed elongational flows are [* ')

5, = Pe(l - ﬂ+s+,8s~2s2)— U(s) +§Nsﬂ(s—ﬂ— 1)

2
B =Pe(B*-2p5s- B)-U(B)+ gNsﬁ(ﬂ— s—1),
where U(s) is defined in (2). We have determined the full set of stable (and unstable)
elongation-induced equilibria.[6’ 10. 11 Erom these earlier results, the stable elongation-
induced equilibria and their corresponding maximum effective conductivity enhancement
versus volume fraction, for both axial and planar elongation, is illustrated in Figure 3

(where Pe > () and Figure 4 (where Pe < 0). We give results for rod-like LCP molecules
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here. Pe = 0 corresponds to the quiescent case, where isotropic and nematic equilibria co-
exist in a narrow window of bi-stability. We display Pe # 0 which have already “pulled

out’’ the bi-stable phases, and unique stable phases remain.
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Figure 3. Elongation-induced maximum effective conductivity enhancement versus
volume fraction for axial elongation.
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Figure 4. Elongation-induced maximum effective conductivity enhancement versus
volume fraction for planar elongation.
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From Figure 2 and Figure 4 it is clear that when the elongation rate is high enough, the
maximum effective conductivity enhancement behaves almost the same for both the fiber

spinning flow and the pure axial elongation flow.

Conclusions

These results predict that surface and thermal effects are negligible at sufficiently high
extension rates relative to the effects of nematic orientation and elongation enhancements
on thermal and electrical composite properties. Perhaps the practical limitation here is the
elongational viscosity of the liquid nano-composite, putting limits on extension rates. For
volume-averaged properties, ignoring percolation behavior, these results imply there is no
thermal or electrical property compromise in producing much larger fibers, rather than

traditional thin fibers which must be bundled together.
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